Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of glutathione in plant signaling under biotic stress.

Identifieur interne : 001448 ( Main/Exploration ); précédent : 001447; suivant : 001449

Role of glutathione in plant signaling under biotic stress.

Auteurs : Carole Dubreuil-Maurizi [France] ; Benoît Poinssot

Source :

RBID : pubmed:22353869

Descripteurs français

English descriptors

Abstract

Glutathione (GSH) is a non-protein thiol compound which has been repeatedly reported to play an important role in plant responses during biotic stresses. However, our knowledge of glutathione-related molecular mechanisms underlying plant defense responses still remains limited. We first discovered that the Arabidopsis thaliana phytoalexin deficient 2-1 (pad2-1) mutant was linked to glutathione deficiency since the mutation was identified in the GSH1 gene encoding the first enzyme of glutathione biosynthesis: Glutamate Cysteine Ligase (GCL). Interestingly, this glutathione-deficient mutant pad2-1 also displays a high susceptibility to a wide range of invaders. We recently reported that the glutathione deficiency in pad2-1 is directly related to a low content of GCL protein. In parallel, we highlighted that the altered redox potential in pad2-1 upregulates the oxidative-stress marker genes GR1, GSTF6 and RbohD during infection with the hemibiotrophic oomycete Phytophthora brassicae. Moreover, the impairment of early signaling events such as plasma membrane depolarization, production of nitric oxide and reactive oxygen species also correlates with the reduced hypersensitive response (HR) observed during P. brassicae infection. Concerning the impaired salicylic acid (SA)-dependent pathway in pad2-1, our results indicated that transcripts of IsoChorismate Synthase1 (ICS1, a main enzyme of SA biosynthesis) do not accumulate in response to pathogen. In this review, we integrate previous knowledge and recent discoveries about pad2-1 to better understand the involvement of glutathione in the pad2-1 pleiotropic phenotype observed during biotic stresses.

DOI: 10.4161/psb.18831
PubMed: 22353869
PubMed Central: PMC3405692


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of glutathione in plant signaling under biotic stress.</title>
<author>
<name sortKey="Dubreuil Maurizi, Carole" sort="Dubreuil Maurizi, Carole" uniqKey="Dubreuil Maurizi C" first="Carole" last="Dubreuil-Maurizi">Carole Dubreuil-Maurizi</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR Plante Microbe Environnement, INRA UMR 1088, CNRS UMR 5184, Université de Bourgogne, Dijon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Plante Microbe Environnement, INRA UMR 1088, CNRS UMR 5184, Université de Bourgogne, Dijon</wicri:regionArea>
<placeName>
<region type="region">Bourgogne-Franche-Comté</region>
<region type="old region">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Poinssot, Benoit" sort="Poinssot, Benoit" uniqKey="Poinssot B" first="Benoît" last="Poinssot">Benoît Poinssot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22353869</idno>
<idno type="pmid">22353869</idno>
<idno type="doi">10.4161/psb.18831</idno>
<idno type="pmc">PMC3405692</idno>
<idno type="wicri:Area/Main/Corpus">001553</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001553</idno>
<idno type="wicri:Area/Main/Curation">001553</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001553</idno>
<idno type="wicri:Area/Main/Exploration">001553</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of glutathione in plant signaling under biotic stress.</title>
<author>
<name sortKey="Dubreuil Maurizi, Carole" sort="Dubreuil Maurizi, Carole" uniqKey="Dubreuil Maurizi C" first="Carole" last="Dubreuil-Maurizi">Carole Dubreuil-Maurizi</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR Plante Microbe Environnement, INRA UMR 1088, CNRS UMR 5184, Université de Bourgogne, Dijon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR Plante Microbe Environnement, INRA UMR 1088, CNRS UMR 5184, Université de Bourgogne, Dijon</wicri:regionArea>
<placeName>
<region type="region">Bourgogne-Franche-Comté</region>
<region type="old region">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Poinssot, Benoit" sort="Poinssot, Benoit" uniqKey="Poinssot B" first="Benoît" last="Poinssot">Benoît Poinssot</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis (microbiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glutathione (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Oxidative Stress (genetics)</term>
<term>Phytophthora (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Immunity (genetics)</term>
<term>Signal Transduction (genetics)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (microbiologie)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Glutathion (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Immunité des plantes (génétique)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Mutation (MeSH)</term>
<term>Phytophthora (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress oxydatif (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oxidative Stress</term>
<term>Plant Diseases</term>
<term>Plant Immunity</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Glutathion</term>
<term>Immunité des plantes</term>
<term>Maladies des plantes</term>
<term>Protéines d'Arabidopsis</term>
<term>Stress oxydatif</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Glutathion</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Mutation</term>
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Mutation</term>
<term>Phytophthora</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione (GSH) is a non-protein thiol compound which has been repeatedly reported to play an important role in plant responses during biotic stresses. However, our knowledge of glutathione-related molecular mechanisms underlying plant defense responses still remains limited. We first discovered that the Arabidopsis thaliana phytoalexin deficient 2-1 (pad2-1) mutant was linked to glutathione deficiency since the mutation was identified in the GSH1 gene encoding the first enzyme of glutathione biosynthesis: Glutamate Cysteine Ligase (GCL). Interestingly, this glutathione-deficient mutant pad2-1 also displays a high susceptibility to a wide range of invaders. We recently reported that the glutathione deficiency in pad2-1 is directly related to a low content of GCL protein. In parallel, we highlighted that the altered redox potential in pad2-1 upregulates the oxidative-stress marker genes GR1, GSTF6 and RbohD during infection with the hemibiotrophic oomycete Phytophthora brassicae. Moreover, the impairment of early signaling events such as plasma membrane depolarization, production of nitric oxide and reactive oxygen species also correlates with the reduced hypersensitive response (HR) observed during P. brassicae infection. Concerning the impaired salicylic acid (SA)-dependent pathway in pad2-1, our results indicated that transcripts of IsoChorismate Synthase1 (ICS1, a main enzyme of SA biosynthesis) do not accumulate in response to pathogen. In this review, we integrate previous knowledge and recent discoveries about pad2-1 to better understand the involvement of glutathione in the pad2-1 pleiotropic phenotype observed during biotic stresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22353869</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of glutathione in plant signaling under biotic stress.</ArticleTitle>
<Pagination>
<MedlinePgn>210-2</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/psb.18831</ELocationID>
<Abstract>
<AbstractText>Glutathione (GSH) is a non-protein thiol compound which has been repeatedly reported to play an important role in plant responses during biotic stresses. However, our knowledge of glutathione-related molecular mechanisms underlying plant defense responses still remains limited. We first discovered that the Arabidopsis thaliana phytoalexin deficient 2-1 (pad2-1) mutant was linked to glutathione deficiency since the mutation was identified in the GSH1 gene encoding the first enzyme of glutathione biosynthesis: Glutamate Cysteine Ligase (GCL). Interestingly, this glutathione-deficient mutant pad2-1 also displays a high susceptibility to a wide range of invaders. We recently reported that the glutathione deficiency in pad2-1 is directly related to a low content of GCL protein. In parallel, we highlighted that the altered redox potential in pad2-1 upregulates the oxidative-stress marker genes GR1, GSTF6 and RbohD during infection with the hemibiotrophic oomycete Phytophthora brassicae. Moreover, the impairment of early signaling events such as plasma membrane depolarization, production of nitric oxide and reactive oxygen species also correlates with the reduced hypersensitive response (HR) observed during P. brassicae infection. Concerning the impaired salicylic acid (SA)-dependent pathway in pad2-1, our results indicated that transcripts of IsoChorismate Synthase1 (ICS1, a main enzyme of SA biosynthesis) do not accumulate in response to pathogen. In this review, we integrate previous knowledge and recent discoveries about pad2-1 to better understand the involvement of glutathione in the pad2-1 pleiotropic phenotype observed during biotic stresses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dubreuil-Maurizi</LastName>
<ForeName>Carole</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>UMR Plante Microbe Environnement, INRA UMR 1088, CNRS UMR 5184, Université de Bourgogne, Dijon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poinssot</LastName>
<ForeName>Benoît</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22353869</ArticleId>
<ArticleId IdType="pii">18831</ArticleId>
<ArticleId IdType="doi">10.4161/psb.18831</ArticleId>
<ArticleId IdType="pmc">PMC3405692</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Mar;69(6):1006-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22066515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):606-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jul;35(2):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2448-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8955-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8090752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 May;146(1):381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9136026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Oct;16(1):73-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9807829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(4):473-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Sep;55(5):774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Aug;5(8):575-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19483696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jun 1;62(5):840-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):364-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22007023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):454-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21777251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(3):293-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722772</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Bourgogne</li>
<li>Bourgogne-Franche-Comté</li>
</region>
<settlement>
<li>Dijon</li>
</settlement>
<orgName>
<li>Université de Bourgogne</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Poinssot, Benoit" sort="Poinssot, Benoit" uniqKey="Poinssot B" first="Benoît" last="Poinssot">Benoît Poinssot</name>
</noCountry>
<country name="France">
<region name="Bourgogne-Franche-Comté">
<name sortKey="Dubreuil Maurizi, Carole" sort="Dubreuil Maurizi, Carole" uniqKey="Dubreuil Maurizi C" first="Carole" last="Dubreuil-Maurizi">Carole Dubreuil-Maurizi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001448 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001448 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22353869
   |texte=   Role of glutathione in plant signaling under biotic stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22353869" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024